CHAPTER 3 • Parallel Lines and Planes

Page 75 • CLASSROOM EXERCISES

- 1. a. $\angle 1$, $\angle 5$; $\angle 2$, $\angle 6$; $\angle 3$, $\angle 7$; $\angle 4$, $\angle 8$ b. $\angle 2$, $\angle 8$; $\angle 3$, $\angle 5$ c. $\angle 2$, $\angle 5$; $\angle 3$, $\angle 8$ d. $\angle 1$, $\angle 7$; $\angle 4$, $\angle 6$ e. $\angle 1$, $\angle 6$; $\angle 4$, $\angle 7$
- 2. s-s. int. \(\delta\) 3. corr. \(\delta\) 4. none 5. alt. int. \(\delta\) 6. none
- 7. corr. 🖄 8. s-s. int. 🖄 9. alt. int. 🖄
- 10. a. | b. | c. skew d. int. e. skew f. skew
- 11. \overrightarrow{AB} , \overrightarrow{EJ} , \overrightarrow{FK} , \overrightarrow{HM} , \overrightarrow{IN} , \overrightarrow{DC}
- 12. \overrightarrow{HI} , \overrightarrow{ID} , \overrightarrow{FE} , \overrightarrow{EA} , \overrightarrow{JK} , \overrightarrow{JB} , \overrightarrow{MN} , \overrightarrow{NC} , \overrightarrow{BC} , \overrightarrow{AD}
- 13. \overrightarrow{EJ} , \overrightarrow{FK} , \overrightarrow{GL} , \overrightarrow{HM} , \overrightarrow{IN} 14. Answers may vary; for example, \overrightarrow{EF} , \overrightarrow{HI} ; \overrightarrow{BJ} , \overrightarrow{LM}
- 15. never 16. always 17. sometimes 18. never
- 19. a. sometimes b. sometimes c. sometimes

Pages 76-77 • WRITTEN EXERCISES

- A 1. alt. int. \(\frac{1}{2} \) corr. \(\frac{1}{2} \) 3. s-s. int. \(\frac{1}{2} \) 4. alt. int. \(\frac{1}{2} \) 5. corr. \(\frac{1}{2} \)
 - 6. corr. \triangle 7. \overrightarrow{PQ} , \overrightarrow{SR} ; \overrightarrow{SQ} 8. \overrightarrow{SP} , \overrightarrow{QR} ; \overrightarrow{SQ} 9. \overrightarrow{PQ} , \overrightarrow{SR} ; \overrightarrow{PS}
 - 10. \overrightarrow{PS} , \overrightarrow{QR} ; \overrightarrow{SR} 11. \overrightarrow{PQ} , \overrightarrow{SR} ; \overrightarrow{QR} 12. corr. \angle s 13. corr. \angle s
 - 14. alt. int. \(\delta \) 15. s-s. int. \(\delta \) 16. s-s. int. \(\delta \) 17. corr. \(\delta \) 18. Corr. \(\delta \) are ≅.
 - 19. Alt. int. \angle s are \cong . 20. S-s. int. \angle s are supp.
- **B** 21. a. Answers may vary. b. Same as $m \angle 1 + m \angle 2$ c. Same as $m \angle 1 + m \angle 2$
 - **d.** When 2 nonparallel lines are cut by transversals, the sum of the measures of s-s. int. \(\Lambda \) is a constant.
 - 22. Check students' drawings. 23. \overrightarrow{BH} , \overrightarrow{CI} , \overrightarrow{DJ} , \overrightarrow{EK} , \overrightarrow{FL} 24. \overrightarrow{GH} , \overrightarrow{ED} , \overrightarrow{KJ}
 - 25. Answers may vary. \overrightarrow{FL} , \overrightarrow{EK} , \overrightarrow{DJ} , \overrightarrow{CI} , \overrightarrow{GL} , \overrightarrow{LK} , \overrightarrow{JI} , \overrightarrow{IH} 26. CDJI; GHIJKL
 - 27. ABHG, BCIH, CDJI, DEKJ 28. 4
 - **29.** If the top and bottom lie in \parallel planes, then \overline{CD} and \overline{IJ} are the lines of intersection of DCIJ with 2 \parallel planes, and are therefore \parallel .
 - 30. always 31. sometimes 32. never 33. always 34. sometimes
 - 35. sometimes 36. sometimes 37. always 38. sometimes 39. sometimes
- C 40-42. Sketches may vary.

40.

41.

Staten

21. State

1. k

2. 4

3. m

4. m

5. L

22. State

1. k

2. 4

3. n

4. y

5. ,

23. a.

Page 78 • EXPLORATIONS

≅ ½: corr. ½, alt. int. ½, vert. ½, alt. ext. ½ supp. ½: s-s. int. ½, s-s. ext. ½, adj. ½

Page 80 • CLASSROOM EXERCISES

- 1. $l \parallel p$ 2. If $2 \parallel$ lines are cut by a trans., then corr. \angle s are \cong .
- 3. If $2 \parallel$ lines are cut by a trans., then alt. int. \angle s are \cong .
- 4. If $2 \parallel$ lines are cut by a trans., then s-s. int. \angle s are supp.
- 5. If $2 \parallel$ lines are cut by a trans., then corr. \angle s are \cong .
- **6.** If $2 \parallel$ lines are cut by a trans., then alt. int. \angle s are \cong . **7.** Vert. \angle s are \cong .
- 8. If a trans. is \bot to one of two $\|$ lines, then it is \bot to the other one also.
- 9. If $2 \parallel$ lines are cut by a trans., then s-s. int. \triangle are supp.
- **10.** $m \angle 4 = m \angle 5 = m \angle 8 = 130; m \angle 2 = m \angle 3 = m \angle 6 = m \angle 7 = 50$
- 11. $m \angle 4 = m \angle 5 = m \angle 8 = x$; $m \angle 2 = m \angle 3 = m \angle 6 = m \angle 7 = 180 x$
- **12.** $m \angle 3 + m \angle 4 = 180$; $3m \angle 3 = 180$; $m \angle 3 = 60$, so $m \angle 6 = 60$
- **13.** $m \angle 5 + m \angle 6 = 180; 2m \angle 6 + 20 = 180; m \angle 6 = 80 = m \angle 2; m \angle 1 = 100$
- 14. In Step 2 he used Thm. 3-2, which relies on Post. 10.

Pages 80-82 • WRITTEN EXERCISES

- **A** 1. $\angle 3$, $\angle 6$, $\angle 8$ 2. $\angle 6$, $\angle 9$, $\angle 14$ 3. $\angle 4$, $\angle 5$, $\angle 7$, $\angle 10$, $\angle 12$, $\angle 13$, $\angle 15$
 - **4.** $\angle 1$, $\angle 3$, $\angle 6$, $\angle 8$, $\angle 9$, $\angle 11$, $\angle 14$, $\angle 16$ **5.** 110, 70 **6.** x, 180 -x
 - 7. x = 60, y = 61 8. 4x + 14x = 180, x = 10; 2y = 90; y = 45
 - **9.** 120 + x = 180, x = 60; 60 = 3y + 6, y = 18
 - **10.** x = 70; 50 + 70 + y = 180, y = 60
 - 11. 3x = 42, x = 14; 3(14) + 6y 6 = 90, y = 9
 - 12. x = 55; y + 55 + 50 = 180, y = 75
 - 13. 1. Given 2. Def. of \bot lines 3. $l \parallel n$ 4. If $2 \parallel$ lines are cut by a trans., then corr. \angle s are \cong . 5. $m\angle 2 = 90$ 6. Def. of \bot lines
- **B** 14. x = 56; 56 + 24 + y = 180, y = 100; 56 + 24 + 4z = 180, z = 25
 - 15. x = 70; 5y + 10 = 70, y = 12; z + 32 = 5(12) + 10, z = 38

b. More information is needed.

18.
$$2x + y = 60, 2x - y = 40; 4x = 100, x = 25; y = 10$$

19.
$$4x - 2y = 110, 4x + 2y = 130; 8x = 240, x = 30; y = 5$$

20. Statements

		1911
1.	\boldsymbol{k}	l

2.
$$\angle 2 \cong \angle 4$$

$$3. \ \angle 4 \cong \angle 7$$

$$4. \ \angle 2 \cong \angle 7$$

Reasons

- 1. Given
- 2. If $2 \parallel$ lines are cut by a trans., then corr. \angle s are \cong .
- 3. Vert. \angle s are \cong .
- 4. Trans. Prop.

21. Statements

1.
$$k \parallel l$$

2.
$$\angle 1 \cong \angle 8$$
, or $m \angle 1 = m \angle 8$

3.
$$m \angle 8 + m \angle 7 = 180$$

4.
$$m \angle 1 + m \angle 7 = 180$$

5. $\angle 1$ is supp. to $\angle 7$.

Reasons

- 1. Given
- 2. If $2 \parallel$ lines are cut by a trans., then alt. int. \angle s are \cong .
- 3. ∠ Add. Post.
- 4. Substitution Prop.
- 5. Def. of supp. \(\lambde{s} \)

22. Statements

1.
$$k \parallel n$$

2.
$$\angle 1 \cong \angle 2$$
, or $m \angle 1 = m \angle 2$

3.
$$m \angle 2 + m \angle 4 = 180$$

4.
$$m \angle 1 + m \angle 4 = 180$$

5.
$$\angle 1$$
 is supp. to $\angle 4$.

Reasons

- 1. Given
- 2. If $2 \parallel$ lines are cut by a trans., then alt. int. \angle s are \cong .
- 3. ∠ Add. Post.
- 4. Substitution Prop.
- 5. Def. of supp. 🖄

23. a.

Statements

- $\overline{1.} \ \overline{AB} \parallel \overline{DC}; \overline{AD} \parallel \overline{BC}$
- 2. $\angle A$ is supp. to $\angle B$; $\angle C$ is supp. to $\angle B$.
- 3. $\angle A \cong \angle C$

- 1. Given
- 2. If $2 \parallel$ lines are cut by a trans., then s-s. int. \leq are supp.
- 3. If $2 \le$ are supps. of the same \angle , then the $2 \le$ are \cong .

b. Yes, by the same reasoning as in part (a).

24. Statements C

- 1. $\overline{AS} \parallel \overline{BT}$
- 2. $m \angle 1 = m \angle 4$
- 3. $m \angle 2 = m \angle 5$
- 4. $m \angle 4 = m \angle 5$
- 5. $m \angle 1 = m \angle 2$
- 6. \overrightarrow{SA} bisects $\angle BSR$.

Reasons

- 1. Given
- 2. If 2 | lines are cut by a trans., then
- 3. If 2 | lines are cut by a trans., then alt. int. \triangle are \cong .
- 4. Given
- 5. Substitution Prop.
- 6. Def. of \angle bis.
- **25.** Steps 1–5 of the proof in Ex. 24 prove that $m \angle 1 = m \angle 2$. \overrightarrow{SB} bisects $\angle AST$, so $m\angle 2=m\angle 3$. Since $m\angle 1+m\angle 2+m\angle 3=180, 3m\angle 1=180$ by Substitution, and $m \angle 1 = 60$.

Page 82 • MIXED REVIEW EXERCISES

- **b.** If 2 lines form \cong adj. \angle s, then the lines are \bot . **c.** True 1. a. True
- **b.** If 2 lines are not skew, then they are $\| \cdot \|$. **c.** False 2. a. True
- b. If 2 \(\Lambda \) are supp., then the sum of their measures is 180. c. True 3. a. True
- b. If 2 planes do not intersect, then they are | . c. True 4. a. True

Page 86 • CLASSROOM EXERCISES

- 1. $\overline{KC} \parallel \overline{DE}$. If 2 lines are cut by a trans. and s-s. int. \angle s are supp., then the lines are | .
- 2. $\overline{OX} \parallel \overline{IZ}$. If 2 lines are cut by a trans. and corr. \angle s are \cong , then the lines are \parallel .
- 3. $\overline{LA} \parallel \overline{TS}$. If 2 lines are cut by a trans. and s-s. int. \angle s are supp., then the lines are $\|$.
- 4. $\overline{GA} \parallel \overline{EM}$. If 2 lines are cut by a trans. and alt. int. \angle s are \cong , then the lines are
- 5. $\overline{PL} \parallel \overline{AR}$ 6. $\overline{PA} \parallel \overline{LR}$ 7. no segs. \parallel 8. $\overline{PL} \parallel \overline{AR}$ 9. no segs.
- 10. $\overline{PL} \parallel \overline{AR}$ 11. $\overline{PA} \parallel \overline{LR}$
- 12. Through a pt. outside a line, there is a line || to the given line. Through a pt. outside a line, there is no more than 10 to the given line. a line, there is no more than one line \parallel to the given line.
- 13. Through a point outside a line, there is a line \perp to the given line. Through a point outside a line, there is no many the size of the given line.
- outside a line, there is no more than one line \perp to the given line. 15. one 16. one 17. one; Protractor Post. 18. Infinitely many

20. If k | l, then (Substitution (, | Pages 87-88 . WRIT

Key to Chapter of

19. a. False

 $_{A}\ 1.\ \widehat{AB}\ \|\ \widehat{FC}$ 6. AE | BD

12. FB | EC 16. $\overrightarrow{AB} \parallel \overrightarrow{FC};$

17. 1. Given and corr. As

 $_{\rm B}$ 18. (x-40) + (90 - 40) -

19. 3x = 105,

20. PQ | RS.

alt. int. As 21. $\angle 1 \cong \angle 4$;

> If PQ | R vert. 🕭 ar

22. Statement

1. <1 is s

 $2. m \angle 2.$ 3. <3 is;

4. ∠1≅

5. k || n

3. Statemen 1. k 1 t; 2. m<1

- 19. a. False b. True c. True d. True
- **20.** If $k \parallel l$, then $\angle 1 \cong \angle 2$. If $k \parallel n$, then $\angle 1 \cong \angle 3$. Therefore, $\angle 2 \cong \angle 3$ and $l \parallel n$. (Substitution Prop.; if 2 lines are cut by a trans. and corr. \triangle are \cong , then the lines are $\parallel .$)

Pages 87-88 • WRITTEN EXERCISES

- **A** 1. $\overline{AB} \parallel \overline{FC}$ 2. $\overline{AE} \parallel \overline{BD}$ 3. $\overline{AB} \parallel \overline{FC}$ 4. $\overline{FB} \parallel \overline{EC}$ 5. none
 - **6.** $\overline{AE} \parallel \overline{BD}$ **7.** none **8.** none **9.** $\overline{AE} \parallel \overline{BD}$ **10.** $\overline{AE} \parallel \overline{BD}$ **11.** $\overline{AE} \parallel \overline{BD}$
 - 12. $\overline{FB} \parallel \overline{EC}$ 13. $\overline{AE} \parallel \overline{BD}$ 14. none 15. $\overline{FB} \parallel \overline{EC}$; $\overline{AE} \parallel \overline{BD}$
 - 16. $\overline{AB} \parallel \overline{FC}; \overline{AE} \parallel \overline{BD}$
 - 17. 1. Given 2. Vert. \angle s are \cong . 3. Trans. Prop. 4. If 2 lines are cut by a trans. and corr. \angle s are \cong , then the lines are \parallel .
- **B** 18. (x 40) + (x + 40) = 180, 2x = 180, x = 90; (x 40) + y = 180, (90 40) + y = 180, y = 130
 - **19.** 3x = 105, x = 35; 105 = 180 (2y + x), 105 = 180 (2y + 35), 2y = 40, y = 20
 - **20.** $\overline{PQ} \parallel \overline{RS}$. $\angle 1 \cong \angle 2$, $\angle 2 \cong \angle 5$ (Vert. $\angle s$ are \cong .), and $\angle 5 \cong \angle 4$, so $\angle 1 \cong \angle 4$. Since alt. int. $\angle s$ are \cong , $\overline{PQ} \parallel \overline{RS}$.
 - **21.** $\angle 1 \cong \angle 4$; $\angle 2 \cong \angle 5$. If $\angle 3 \cong \angle 6$, then $\overline{PQ} \parallel \overline{RS}$ because alt. int. $\angle 8$ are \cong . If $\overline{PQ} \parallel \overline{RS}$, then $\angle 1 \cong \angle 4$ because they are alt. int. $\angle 8$. $\angle 2 \cong \angle 5$ because vert. $\angle 8$ are \cong .

22. Statements

- 1. $\angle 1$ is supp. to $\angle 2$.
- 2. $m \angle 2 + m \angle 3 = 180$
- 3. $\angle 3$ is supp. to $\angle 2$.
- 4. $\angle 1 \cong \angle 3$
- 5. $k \parallel n$

Reasons

- 1. Given
- 2. ∠ Add. Post.
- 3. Def. of supp. 🖄
- 4. If $2 \leq$ are supps. of the same \angle , then the $2 \leq$ are \cong .
- 5. If 2 lines are cut by a trans. and alt. int. \angle s are \cong , then the lines are \parallel .

23. Statements

- 1. $k \perp t$; $n \perp t$
- 2. $m \angle 1 = 90; m \angle 2 = 90$
- 3. $m \angle 1 = m \angle 2$, or $\angle 1 \cong \angle 2$
- 4. $k \parallel n$

- 1. Given
- 2. Def. of \perp lines
- 3. Substitution Prop.
- 4. If 2 lines are cut by a trans. and corr. \leq are \cong , then the lines are \parallel .

24. Statements

			and the same of th
1.	\overline{BE}	bisects	$\angle DBA$.

2.
$$\angle 2 \cong \angle 3$$

$$3. \ \angle 3 \cong \angle 1$$

4.
$$\angle 2 \cong \angle 1$$

5.
$$\overline{CD} \parallel \overline{BE}$$

Reasons

- 1. Given
- 2. Def. of \angle bis.
- 3. Given
- 4. Trans. Prop.
- 5. If 2 lines are cut by a trans. and alt int. \(\alpha\) are \(\alpha\), then the lines are \(\begin{array}{c}\).

Reasons

- 1. $\overline{BE} \perp \overline{DA}; \overline{CD} \perp \overline{DA}$
- 2. $\overline{CD} \parallel \overline{BE}$

25. Statements

 $3. \ \angle 1 \cong \angle 2$

- 1. Given
- 2. In a plane, 2 lines \perp to the same line are | .
- 3. If $2 \parallel$ lines are cut by a trans., then alt. int. \triangle are \cong .

26. Statements

- 1. $\angle C \cong \angle 3$
- 2. $\overline{CD} \parallel \overline{BE}$
- 3. $\overline{BE} \perp \overline{DA}$
- 4. $\overline{CD} \perp \overline{DA}$

Reasons

- 1. Given
- 2. If 2 lines are cut by a trans. and corr. \angle s are \cong , then the lines are $\|$.
- 3. Given
- 4. If a trans. is \perp to one of 2 | lines, then it is \perp to the other one also.

27.
$$m \angle RST = 40 + 70 = 110$$

29.
$$2x = 5y$$
, $x - y = 30$; $x = 30 + y$, $2(30 + y) = 5y$; $60 + 2y = 5y$, $3y = 60$, $y = 20$; $x - y = 30$, $x - 20 = 30$, $x = 50$

30. The bisectors appear to be $\|$.

Given: $\overrightarrow{BD} \parallel \overrightarrow{CF}; \overrightarrow{BG} \text{ bisects } \angle ABD;$ \overrightarrow{CH} bisects $\angle BCF$.

Prove: $\overrightarrow{BG} \parallel \overrightarrow{CH}$

key to Una Statements 1. BD

2. mLAB

5. mLAE

 $m \angle BC$

6. m\(AE 7. BG |

31. $x^2 + 3x =$

x - 12 =

Page 89 · SELF-T

1. sometimes

6. ∠3, ∠6; ∠

8. ∠3, ∠5 or

13. $\overline{EB} \parallel \overline{DC}$

Page 89 • EXPLOI

The sum of the & outs

Page 92 · APPLIC

Statements

1.
$$\overrightarrow{BD} \parallel \overrightarrow{CF}$$

2.
$$m \angle ABD = m \angle BCF$$

3.
$$\frac{1}{2}m\angle ABD = \frac{1}{2}m\angle BCF$$

4.
$$\overrightarrow{BG}$$
 bisects $\angle ABD$; \overrightarrow{CH} bisects $\angle BCF$.

5.
$$m \angle ABG = \frac{1}{2}m \angle ABD;$$

 $m \angle BCH = \frac{1}{2}m \angle BCF$

6.
$$m \angle ABG = m \angle BCH$$

7.
$$\overrightarrow{BG} \parallel \overrightarrow{CH}$$

Reasons

- 1. Given
- 2. If 2 lines are cut by a trans., then corr. \angle s are \cong .

3. Mult. Prop. of
$$=$$

- 4. Given
- 5. ∠ Bis. Thm.
- 6. Substitution Prop.
- 7. If 2 lines are cut by a trans. and corr. \leq are \cong , then the lines are \parallel .

31.
$$x^2 + 3x = 180$$
; $x^2 + 3x - 180 = 0$; $(x + 15)(x - 12) = 0$; $x + 15 = 0$ or $x - 12 = 0$; $x = -15$ (reject) or $x = 12$; $x = 12$

Page 89 • SELF-TEST 1

- 1. sometimes 2. never 3. always 4. sometimes 5. always
- 6. $\angle 3$, $\angle 6$; $\angle 4$, $\angle 5$ 7. Answers may vary; $\angle 1$, $\angle 5$; $\angle 2$, $\angle 6$; $\angle 3$, $\angle 7$; $\angle 4$, $\angle 8$
- 8. $\angle 3$, $\angle 5$ or $\angle 4$, $\angle 6$ 9. $\angle 4$; $\angle 3$ 10. $\angle 2$, $\angle 8$; $\angle 4$, $\angle 7$ 11. $\angle 2$, $\angle 8$ 12. 65; 115
- 13. $\overline{EB} \parallel \overline{DC}$ 14. none 15. $\overline{AE} \parallel \overline{BD}$ 16. one, one

Page 89 • EXPLORATIONS

The sum of the measures of the \triangle inside the \triangle is 180. The sum of the measures of the \triangle outside the \triangle is 360.

Page 92 • APPLICATION

- 2. d 4.
- 3. b

- 5. c
- 6. a

I

Page 96 • CLASSROOM EXERCISES

- 1. sometimes 2. always 3. never 4. sometimes
- 5. The sums of the meas. of the 2 \leq in each \triangle are =. The meas. of the third \angle in each \triangle must = 180 sum.
- **6.** Let meas. of each $\angle = x$; 3x = 180, x = 60
- 7. In $\triangle ABC$, if $m \angle A \ge 90$ and $m \angle B \ge 90$, then $m \angle A + m \angle B + m \angle C > 180$ since $m \angle C > 0$.
- 8. In $\triangle ABC$, if $m \angle C = 90$, then $m \angle A + m \angle B = 180 90 = 90$.
- **9.** x = 90 **10.** x = 105 **11.** x = 35 + (180 140) = 75
- 12. The bis. of $\angle J$ may not contain the midpt. of \overline{PE} .
- 13. The line through $P \perp$ to \overline{JE} may not contain the midpt. of \overline{JE} .
- 14. \overrightarrow{PX} may not be \parallel to \overrightarrow{JE} .
- 15. By the Substitution Prop., $m \angle 1 + m \angle 2 + m \angle 3 = m \angle 3 + m \angle 4$. By the Subtraction Prop. of =, $m \angle 1 + m \angle 2 = m \angle 4$, which proves Thm. 3-12.
- **16.** $m \angle 1 + m \angle 2 = 90$, so this illustrates Cor. 4, the acute $\angle s$ of a rt. \triangle are comp.

17. $m\angle 1 + m\angle 2 + m\angle 3 = 180$, so this illustrates Thm. 3-11, the sum of the meas. of the $\angle 8$ of a \triangle is 180.

Pages 97-99 • WRITTEN EXERCISES

A 1. a.

b.

c.

Key to Chapter 3, pages 97-99

2. a.

b. \

3. not possible 4.

5. 180 6. 30 7. 95 8.
$$x + (x - 20) = 80; x = 50$$

9.
$$4x + 30 = 6x - 20$$
; $x = 25$

10.
$$m \angle 9 + m \angle 10 + m \angle 11 = (m \angle 7 + m \angle 8) + (m \angle 6 + m \angle 8) + (m \angle 6 + m \angle 7) = 2(m \angle 6 + m \angle 7 + m \angle 8) = 2 \cdot 180 = 360$$

11.
$$x = 30$$
; $y = 50 + 30 = 80$ 12. $x = 110$; $y = 110 - 40 = 70$

13.
$$x = 40$$
; $y = 90 - 40 = 50$

B 14.
$$x = 65 + 25 = 90$$
; $y = 90 - 65 = 25$

15.
$$y = 90 - 40 = 50; x = 90 - 50 = 40$$

16.
$$y = 90 - (40 + 20) = 30$$
; $x + 30 = 90 - 20$, $x = 40$

17. Yes;
$$4n = 2n + 10$$
; $n = 5$; the sides are $4(5) = 20$, $2(5) + 10 = 20$, $7(5) - 15 = 20$.

18. a.
$$3t = 5t - 12$$
, $t = 6$; $3t = t + 20$, $t = 10$; $5t - 12 = t + 20$, $t = 8$

b. No; there is no value of t such that 3t = 5t - 12 = t + 20.

19. Let x be the measure of the smallest angle; x + 2x + 3x = 180; 6x = 180; x = 30; the meas. of the angles are 30, 60, 90.

20.
$$x + (x + 28) + 2x = 180$$
; $4x + 28 = 180$; $4x = 152$; $x = 38$; 38, 66, 76

21.
$$m \angle A + m \angle B + m \angle C = 180$$
; $m \angle A + m \angle B < 120$, so $m \angle C > 60$.

22.
$$m \angle R + m \angle S + m \angle T = 180$$
; $m \angle R + m \angle S > 110$, so $m \angle T < 70$.

23. a. 22 b. 23 c.
$$\angle ABD$$
 and $\angle C$ are comps. of $\angle CBD$.

24. a. 130 **b.** 130 **c.** If
$$m \angle E = 80$$
, then $m \angle FIG$ will always be 130.

25. Statements

1.
$$\angle ABD \cong \angle AED$$

- 2. $\angle A \cong \angle A$
- 3. $\angle C \cong \angle F$

- 1. Given
- 2. Refl. Prop.
- 3. If $2 \leq 0$ of one \triangle are \cong to $2 \leq 0$ of another \triangle , then the third ≤ 0 are \cong .

26.
$$m \angle MTR = 180 - 85 = 95; m \angle STR = 180 - (30 + 95) = 55;$$
 $m \angle 1 = 90 - 55 = 35; m \angle NRT = 55; m \angle 2 = 180 - 55 = 125$

Key to Chapt

16. 3x =

21. Sta

4.

5.

22. St

1.

2.

5

Page 78 • EXPLORATIONS

≅ ½: corr. ½, alt. int. ½, vert. ½, alt. ext. ½ supp. ½: s-s. int. ½, s-s. ext. ½, adj. ½

Page 80 • CLASSROOM EXERCISES

- 1. $l \parallel p$ 2. If $2 \parallel$ lines are cut by a trans., then corr. \angle s are \cong .
- 3. If 2 \parallel lines are cut by a trans., then alt. int. \angle s are \cong .
- 4. If $2 \parallel$ lines are cut by a trans., then s-s. int. \triangle are supp.
- **5.** If $2 \parallel$ lines are cut by a trans., then corr. \triangle are \cong .
- **6.** If $2 \parallel$ lines are cut by a trans., then alt. int. \angle s are \cong . **7.** Vert. \angle s are \cong .
- 8. If a trans. is \bot to one of two $\|$ lines, then it is \bot to the other one also.
- 9. If $2 \parallel$ lines are cut by a trans., then s-s. int. \angle s are supp.
- **10.** $m \angle 4 = m \angle 5 = m \angle 8 = 130; m \angle 2 = m \angle 3 = m \angle 6 = m \angle 7 = 50$
- 11. $m \angle 4 = m \angle 5 = m \angle 8 = x$; $m \angle 2 = m \angle 3 = m \angle 6 = m \angle 7 = 180 x$
- **12.** $m \angle 3 + m \angle 4 = 180$; $3m \angle 3 = 180$; $m \angle 3 = 60$, so $m \angle 6 = 60$
- 13. $m \angle 5 + m \angle 6 = 180$; $2m \angle 6 + 20 = 180$; $m \angle 6 = 80 = m \angle 2$; $m \angle 1 = 100$
- 14. In Step 2 he used Thm. 3-2, which relies on Post. 10.

Pages 80-82 • WRITTEN EXERCISES

- **A** 1. $\angle 3$, $\angle 6$, $\angle 8$ 2. $\angle 6$, $\angle 9$, $\angle 14$ 3. $\angle 4$, $\angle 5$, $\angle 7$, $\angle 10$, $\angle 12$, $\angle 13$, $\angle 15$
 - **4.** $\angle 1$, $\angle 3$, $\angle 6$, $\angle 8$, $\angle 9$, $\angle 11$, $\angle 14$, $\angle 16$ **5.** 110, 70 **6.** x, 180 -x
 - 7. x = 60, y = 61 8. 4x + 14x = 180, x = 10; 2y = 90; y = 45
 - **9.** 120 + x = 180, x = 60; 60 = 3y + 6, y = 18
 - **10.** x = 70; 50 + 70 + y = 180, y = 60
 - 11. 3x = 42, x = 14; 3(14) + 6y 6 = 90, y = 9
 - 12. x = 55; y + 55 + 50 = 180, y = 75
 - 13. 1. Given 2. Def. of \bot lines 3. $l \parallel n$ 4. If $2 \parallel$ lines are cut by a trans., then corr. \angle s are \cong . 5. $m\angle 2 = 90$ 6. Def. of \bot lines
- **B** 14. x = 56; 56 + 24 + y = 180, y = 100; 56 + 24 + 4z = 180, z = 2515. x = 70; 5y + 10 = 70, y = 12; z + 32 = 5(12) + 10, z = 38

16.
$$3x = 90, x = 30; 8y + 4 = 68, y = 8; 2z + 8(8) + 4 = 90, z = 11$$

17. a.
$$m \angle DAB + 116 = 180$$
, $m \angle DAB = 64$; $m \angle KAB = 32$; $m \angle DKA = 32$

b. More information is needed.

18.
$$2x + y = 60, 2x - y = 40; 4x = 100, x = 25; y = 10$$

19.
$$4x - 2y = 110, 4x + 2y = 130; 8x = 240, x = 30; y = 5$$

20. Statements

1.	\boldsymbol{k}	11	l
1.	10	11	U

2. $\angle 2 \cong \angle 4$

$$3. \ \angle 4 \cong \angle 7$$

4.
$$\angle 2 \cong \angle 7$$

Reasons

- 1. Given
- 2. If $2 \parallel$ lines are cut by a trans., then corr. \angle s are \cong .
- 3. Vert. \angle s are \cong .
- 4. Trans. Prop.

21. Statements

1.
$$k \parallel l$$

2.
$$\angle 1 \cong \angle 8$$
, or $m \angle 1 = m \angle 8$

3.
$$m \angle 8 + m \angle 7 = 180$$

4.
$$m \angle 1 + m \angle 7 = 180$$

5. $\angle 1$ is supp. to $\angle 7$.

Reasons

- 1. Given
- 2. If $2 \parallel$ lines are cut by a trans., then alt. int. \angle s are \cong .
- 3. ∠ Add. Post.
- 4. Substitution Prop.
- 5. Def. of supp. 🖄

22. Statements

1. $k \parallel n$

2.
$$\angle 1 \cong \angle 2$$
, or $m \angle 1 = m \angle 2$

- 3. $m \angle 2 + m \angle 4 = 180$
- 4. $m \angle 1 + m \angle 4 = 180$
- 5. $\angle 1$ is supp. to $\angle 4$.

Reasons

- 1. Given
- 2. If $2 \parallel$ lines are cut by a trans., then alt. int. \triangle are \cong .
- 3. \angle Add. Post.
- 4. Substitution Prop.
- 5. Def. of supp. 🖄

23. a.

Statements

$\overline{1. \ \overline{AB} \ \| \ \overline{DC}; \overline{AD} \ \| \ \overline{BC}}$

- 2. $\angle A$ is supp. to $\angle B$; $\angle C$ is supp. to $\angle B$.
- 3. $\angle A \cong \angle C$

- 1. Given
- 2. If 2 | lines are cut by a trans., then s-s. int. \(\Lambda \) are supp.
- 3. If $2 \le$ are supps. of the same \angle , then the $2 \le$ are \cong .

b. Yes, by the same reasoning as in part (a).

key to Ch

6

Pages 87

17.

B 18.

19.

20.

21,

24. Statements

1.	\overline{AS}	$\ \overline{BT}$
		11

2.
$$m \angle 1 = m \angle 4$$

3.
$$m \angle 2 = m \angle 5$$

4.
$$m \angle 4 = m \angle 5$$

5.
$$m \angle 1 = m \angle 2$$

6.
$$\overrightarrow{SA}$$
 bisects $\angle BSR$.

Reasons

- 1. Given
- 2. If 2 | lines are cut by a trans., then corr. \angle s are \cong .
- 3. If 2 | lines are cut by a trans., then alt. int. \triangle are \cong .
- 4. Given
- 5. Substitution Prop.
- 6. Def. of \angle bis.
- 25. Steps 1-5 of the proof in Ex. 24 prove that $m \angle 1 = m \angle 2$. \overrightarrow{SB} bisects $\angle AST$. so $m \angle 2 = m \angle 3$. Since $m \angle 1 + m \angle 2 + m \angle 3 = 180$, $3m \angle 1 = 180$ by Substitution, and $m \angle 1 = 60$.

Page 82 • MIXED REVIEW EXERCISES

- **1.** a. True b. If 2 lines form \cong adj. \angle s, then the lines are \bot .
- b. If 2 lines are not skew, then they are || . c. False 2. a. True
- b. If 2 \(\text{\Lambda} \) are supp., then the sum of their measures is 180. 3. a. True
- **b.** If 2 planes do not intersect, then they are ||. 4. a. True

Page 86 • CLASSROOM EXERCISES

- 1. $\overline{KC} \parallel \overline{DE}$. If 2 lines are cut by a trans. and s-s. int. \angle s are supp., then the lines are | .
- 2. $\overline{OX} \parallel \overline{IZ}$. If 2 lines are cut by a trans. and corr. \angle s are \cong , then the lines are \parallel .
- 3. $\overline{LA} \parallel \overline{TS}$. If 2 lines are cut by a trans. and s-s. int. \angle s are supp., then the lines are $\|$.
- 4. $\overline{GA} \parallel \overline{EM}$. If 2 lines are cut by a trans. and alt. int. $\angle s$ are \cong , then the lines are $\parallel \cdot$
- 5. $\overline{PL} \parallel \overline{AR}$ 6. $\overline{PA} \parallel \overline{LR}$ 7. no segs. \parallel 8. $\overline{PL} \parallel \overline{AR}$ 9. no segs. \parallel
- 10. $\overline{PL} \parallel \overline{AR}$ 11. $PA \parallel LR$
- 12. Through a pt. outside a line, there is a line \parallel to the given line. Through a pt. outside a line, there is no more than one line \parallel to the given line.
- 13. Through a point outside a line, there is a line \perp to the given line. Through a point outside a line, there is no more than one line \perp to the given line.
- 14. one 16. one 17. one; Protractor Post. 18. Infinitely many

- 19. a. False b. True c. True d. True
- 20. If $k \parallel l$, then $\angle 1 \cong \angle 2$. If $k \parallel n$, then $\angle 1 \cong \angle 3$. Therefore, $\angle 2 \cong \angle 3$ and $l \parallel n$. (Substitution Prop.; if 2 lines are cut by a trans. and corr. $\angle 3$ are \cong , then the lines are $\parallel .$)

Pages 87-88 • WRITTEN EXERCISES

- A 1. $\overline{AB} \parallel \overline{FC}$ 2. $\overline{AE} \parallel \overline{BD}$ 3. $\overline{AB} \parallel \overline{FC}$ 4. $\overline{FB} \parallel \overline{EC}$ 5. none
 - 6. $\overline{AE} \parallel \overline{BD}$ 7. none 8. none 9. $\overline{AE} \parallel \overline{BD}$ 10. $\overline{AE} \parallel \overline{BD}$ 11. $\overline{AE} \parallel \overline{BD}$
 - 12. $\overline{FB} \parallel \overline{EC}$ 13. $\overline{AE} \parallel \overline{BD}$ 14. none 15. $\overline{FB} \parallel \overline{EC}; \overline{AE} \parallel \overline{BD}$
 - 16. $\overline{AB} \parallel \overline{FC}; \overline{AE} \parallel \overline{BD}$
 - 17. 1. Given 2. Vert. \angle s are \cong . 3. Trans. Prop. 4. If 2 lines are cut by a trans. and corr. \angle s are \cong , then the lines are \parallel .
- **B** 18. (x 40) + (x + 40) = 180, 2x = 180, x = 90; (x 40) + y = 180, (90 40) + y = 180, y = 130
 - **19.** 3x = 105, x = 35; 105 = 180 (2y + x), 105 = 180 (2y + 35), 2y = 40, y = 20
 - **20.** $\overline{PQ} \parallel \overline{RS}$. $\angle 1 \cong \angle 2$, $\angle 2 \cong \angle 5$ (Vert. $\angle 3$ are \cong .), and $\angle 5 \cong \angle 4$, so $\angle 1 \cong \angle 4$. Since alt. int. $\angle 3$ are \cong , $\overline{PQ} \parallel \overline{RS}$.
 - 21. $\angle 1 \cong \angle 4$; $\angle 2 \cong \angle 5$. If $\angle 3 \cong \angle 6$, then $\overline{PQ} \parallel \overline{RS}$ because alt. int. $\angle 8$ are \cong . If $\overline{PQ} \parallel \overline{RS}$, then $\angle 1 \cong \angle 4$ because they are alt. int. $\angle 8 \cong \angle 5$ because vert. $\angle 8$ are \cong .

22. Statements

- 1. $\angle 1$ is supp. to $\angle 2$.
- 2. $m \angle 2 + m \angle 3 = 180$
- 3. $\angle 3$ is supp. to $\angle 2$.
- 4. $\angle 1 \cong \angle 3$
- 5. $k \parallel n$

Reasons

- 1. Given
- 2. ∠ Add. Post.
- 3. Def. of supp. 🖄
- 4. If $2 \le$ are supps. of the same \angle , then the $2 \le$ are \cong .
- 5. If 2 lines are cut by a trans. and alt. int. \angle s are \cong , then the lines are \parallel .

23. Statements

- 1. $k \perp t$; $n \perp t$
- 2. $m \angle 1 = 90; m \angle 2 = 90$
- 3. $m \angle 1 = m \angle 2$, or $\angle 1 \cong \angle 2$
- 4. $k \parallel n$

- 1. Given
- 2. Def. of \perp lines
- 3. Substitution Prop.

24. Statements

- 1. \overline{BE} bisects $\angle DBA$.
- 2. $\angle 2 \cong \angle 3$
- $3. \ \angle 3 \cong \angle 1$
- 4. $\angle 2 \cong \angle 1$
- 5. $\overline{CD} \parallel \overline{BE}$

Reasons

- 1. Given
- 2. Def. of \angle bis.
- 3. Given
- 4. Trans. Prop.
- 5. If 2 lines are cut by a trans. and alt. int. ≼ are ≅, then the lines are ||.

25. Statements

1.
$$\overline{BE} \perp \overline{DA}; \overline{CD} \perp \overline{DA}$$

- 2. $\overline{CD} \parallel \overline{BE}$
- $3. \angle 1 \cong \angle 2$

Reasons

- 1. Given
- 2. In a plane, 2 lines \perp to the same line are \parallel .
- 3. If $2 \parallel$ lines are cut by a trans., then alt. int. \angle s are \cong .

26. Statements

- 1. $\angle C \cong \angle 3$
- 2. $\overline{CD} \parallel \overline{BE}$
- 3. $\overline{BE} \perp \overline{DA}$
- 4. $\overline{CD} \perp \overline{DA}$

Reasons

- 1. Given
- 2. If 2 lines are cut by a trans. and corr. \angle s are \cong , then the lines are \parallel .
- 3. Given
- 4. If a trans. is \perp to one of 2 \parallel lines, then it is \perp to the other one also.

27.
$$m \angle RST = 40 + 70 = 110$$

- 29. 2x = 5y, x y = 30; x = 30 + y, 2(30 + y) = 5y; 60 + 2y = 5y, 3y = 60,
- C 30. The bisectors appear to be $\|$.

Given: $\overrightarrow{BD} \parallel \overrightarrow{CF}$; \overrightarrow{BG} bisects $\angle ABD$; \overrightarrow{CH} bisects $\angle BCF$.

Prove: $\overrightarrow{BG} \parallel \overrightarrow{CH}$

31.

Page 8

1.

6.

8, 13,

Page 80

Page 92

1,

Statements

18688

and all are

ame

ns., the

and con

lines,

T = 1

.

- $\overrightarrow{BD} \parallel \overrightarrow{CF}$
- 2. $m \angle ABD = m \angle BCF$
- 3. $\frac{1}{2}m\angle ABD = \frac{1}{2}m\angle BCF$
- 4. \overrightarrow{BG} bisects $\angle ABD$; \overrightarrow{CH} bisects $\angle BCF$.
- 5. $m \angle ABG = \frac{1}{2}m \angle ABD$; $m \angle BCH = \frac{1}{2}m \angle BCF$
- 6. $m \angle ABG = m \angle BCH$
- 7. $\overrightarrow{BG} \parallel \overrightarrow{CH}$

Reasons

- 1. Given
- 2. If 2 lines are cut by a trans., then corr. \angle s are \cong .
- 3. Mult. Prop. of =
- 4. Given
- 5. \angle Bis. Thm.
- 6. Substitution Prop.
- 7. If 2 lines are cut by a trans. and corr. \triangle are \cong , then the lines are \parallel .

31.
$$x^2 + 3x = 180$$
; $x^2 + 3x - 180 = 0$; $(x + 15)(x - 12) = 0$; $x + 15 = 0$ or $x - 12 = 0$; $x = -15$ (reject) or $x = 12$; $x = 12$

Page 89 • SELF-TEST 1

- 1. sometimes 2. never 3. always 4. sometimes 5. always
- 6. $\angle 3$, $\angle 6$; $\angle 4$, $\angle 5$ 7. Answers may vary; $\angle 1$, $\angle 5$; $\angle 2$, $\angle 6$; $\angle 3$, $\angle 7$; $\angle 4$, $\angle 8$
- 8. $\angle 3$, $\angle 5$ or $\angle 4$, $\angle 6$ 9. $\angle 4$; $\angle 3$ 10. $\angle 2$, $\angle 8$; $\angle 4$, $\angle 7$ 11. $\angle 2$, $\angle 8$ 12. 65; 115
- 13. $\overline{EB} \parallel \overline{DC}$ 14. none 15. $\overline{AE} \parallel \overline{BD}$ 16. one, one

Page 89 • EXPLORATIONS

The sum of the measures of the \triangle inside the \triangle is 180. The sum of the measures of the \triangle outside the \triangle is 360.

Page 92 • APPLICATION

1.

- 2. d 4.
- 3. b

- 5. c
- 6. a

B

Page 96 • CLASSROOM EXERCISES

- 4. sometimes 3. never 2. always 1. sometimes
- 5. The sums of the meas. of the 2 \angle s in each \triangle are =. The meas. of the third \angle in each \triangle must = 180 - sum.
- **6.** Let meas. of each $\angle = x$; 3x = 180, x = 60
- 7. In $\triangle ABC$, if $m \angle A \ge 90$ and $m \angle B \ge 90$, then $m \angle A + m \angle B + m \angle C > 180$ since $m \angle C > 0$.
- 8. In $\triangle ABC$, if $m \angle C = 90$, then $m \angle A + m \angle B = 180 90 = 90$.
- **9.** x = 90 **10.** x = 105 **11.** x = 35 + (180 140) = 75
- 12. The bis. of $\angle J$ may not contain the midpt. of \overline{PE} .
- 13. The line through $P \perp$ to \overline{JE} may not contain the midpt. of \overline{JE} .
- 14. \overrightarrow{PX} may not be \parallel to \overrightarrow{JE} .
- 15. By the Substitution Prop., $m\angle 1 + m\angle 2 + m\angle 3 = m\angle 3 + m\angle 4$. By the Subtraction Prop. of =, $m\angle 1 + m\angle 2 = m\angle 4$, which proves Thm. 3-12.

16. $m \angle 1 + m \angle 2 = 90$, so this illustrates Cor. 4, the acute \triangle of a rt. \triangle are comp.

Ex. 16

17. $m\angle 1 + m\angle 2 + m\angle 3 = 180$, so this illustrates Thm. 3-11, the sum of the meas. of

Pages 97-99 • WRITTEN EXERCISES

1. a. A

c.

2. a.

3. not possible 4.

b.

5. 180 **6.** 30 **7.** 95 8.
$$x + (x - 20) = 80; x = 50$$

9.
$$4x + 30 = 6x - 20$$
; $x = 25$

10.
$$m \angle 9 + m \angle 10 + m \angle 11 = (m \angle 7 + m \angle 8) + (m \angle 6 + m \angle 8) + (m \angle 6 + m \angle 7) = 2(m \angle 6 + m \angle 7 + m \angle 8) = 2 \cdot 180 = 360$$

11.
$$x = 30$$
; $y = 50 + 30 = 80$ **12.** $x = 110$; $y = 110 - 40 = 70$

13.
$$x = 40$$
; $y = 90 - 40 = 50$

B 14.
$$x = 65 + 25 = 90$$
; $y = 90 - 65 = 25$

15.
$$y = 90 - 40 = 50$$
; $x = 90 - 50 = 40$

16.
$$y = 90 - (40 + 20) = 30$$
; $x + 30 = 90 - 20$, $x = 40$

17. Yes;
$$4n = 2n + 10$$
; $n = 5$; the sides are $4(5) = 20$, $2(5) + 10 = 20$, $7(5) - 15 = 20$.

18. a.
$$3t = 5t - 12$$
, $t = 6$; $3t = t + 20$, $t = 10$; $5t - 12 = t + 20$, $t = 8$ **b.** No; there is no value of t such that $3t = 5t - 12 = t + 20$.

19. Let x be the measure of the smallest angle; x + 2x + 3x = 180; 6x = 180; x = 30; the meas. of the angles are 30, 60, 90.

20.
$$x + (x + 28) + 2x = 180$$
; $4x + 28 = 180$; $4x = 152$; $x = 38$; 38, 66, 76

21.
$$m \angle A + m \angle B + m \angle C = 180$$
; $m \angle A + m \angle B < 120$, so $m \angle C > 60$.

22.
$$m \angle R + m \angle S + m \angle T = 180; m \angle R + m \angle S > 110, \text{ so } m \angle T < 70.$$

23. a. 22 b. 23 c.
$$\angle ABD$$
 and $\angle C$ are comps. of $\angle CBD$.

24. a. 130 b. 130 c. If
$$m \angle E = 80$$
, then $m \angle FIG$ will always be 130.

25. Statements

1.
$$\angle ABD \cong \angle AED$$

1.
$$\angle ABD = \angle AED$$

2.
$$\angle A \cong \angle A$$

3. $\angle C \cong \angle F$

- 2. Refl. Prop.
- 3. If $2 \le of$ one \triangle are $\cong to 2 \le of$ another \triangle , then the third \angle s are \cong .

26.
$$m \angle MTR = 180 - 85 = 95; m \angle STR = 180 - (30 + 95) = 55;$$
 $m \angle 1 = 90 - 55 = 35; m \angle NRT = 55; m \angle 2 = 180 - 55 = 125$

27. Given: $\triangle ABC$

Prove: $m \angle 1 + m \angle 2 + m \angle 3 = 180$

Statements

1. Draw \overrightarrow{CD} through $C \parallel$ to \overrightarrow{AB} .

2. $\angle 2 \cong \angle 5$, or $m \angle 2 = m \angle 5$

3. $\angle 1 \cong \angle 4$, or $m \angle 1 = m \angle 4$

4. $m \angle ACD + m \angle 4 = 180$; $m \angle ACD = m \angle 3 + m \angle 5$

5. $m \angle 3 + m \angle 4 + m \angle 5 = 180$

6. $m \angle 1 + m \angle 2 + m \angle 3 = 180$

Reasons

1. Through a pt. outside a line, there is exactly 1 line | to the given line

pages 97-4

2. If 2 || lines are cut by a trans., then

3. If 2 \parallel lines are cut by a trans., then

4. ∠ Add. Post.

5. Substitution Prop.

6. Substitution Prop.

28. Statements

1. $m \angle JGI = m \angle H + m \angle I$

2. $m \angle H = m \angle I$

3. $m \angle JGI = 2m \angle H$

 $4. \ \frac{1}{2}m \angle JGI = m \angle H$

5. \overrightarrow{GK} bisects $\angle JGI$.

6. $m \angle 1 = \frac{1}{2} m \angle JGI$

7. $m \angle 1 = m \angle H$

8. $\overline{GK} \parallel \overline{HI}$

Reasons

1. The meas. of an ext. \angle of a \triangle = the sum of the meas. of the 2 remote int. S.

2. Given

3. Substitution Prop.

4. Div. Prop. of =

5. Given

6. \angle Bis. Thm.

7. Substitution Prop.

8. If 2 lines are cut by a trans. and corr. \triangle are \cong , then the lines are $\|$.

29. 2x + y + 125 = 180, 2x + y = 55, y = 55 - 2x; (x + 2y) + (2x + y) = 90, (x + 2y) + 55 = 90, x + 2y = 35; x + 2(55 - 2x) = 35, x + 110 - 4x = 35,3x = 75, x = 25; 2x + y = 55, 50 + y = 55, y = 5

30. (5x + y) + (5x - y) + 100 = 180, 10x = 80, x = 8; 2x + y = 5x - y, 2y = 3x, 2y = 24, y = 12

31. $\angle 1 \cong \angle 2 \cong \angle 5$; $\angle 3 \cong \angle 4 \cong \angle 6$

C 32. $\angle 7 \cong \angle 8$, $\angle 11 \cong \angle 12$

33. a-b. Check students' drawings. See figure at the right.

c. The angle measures 90, so the bisectors are \perp . **d.** Given: $\overrightarrow{AB} \parallel \overrightarrow{CD}$; \overrightarrow{AE} bisects $\angle BAC$;

 \overrightarrow{CF} bisects $\angle ACD$.

Prove: $\overrightarrow{AE} \perp \overrightarrow{CF}$

3. 2 MLBAC + 2 MLAACD = ... 4. Of bispects of CD. 6. m^{L2} + m^{L3} = 90 7. m/AXF = m/2 + m/3

8. mLAXF = 90 9. ÁÐ L CP

34. Since 3x and 3y are meas. of s-s. in 3x + 3y = 180, and x + y = 60. mLCDA = 180 - (x + y) = 121the third \angle of a \triangle with \angle of mean $^{mLCBA} = 180 - (2x + 2y) =$ Then, in ABCD, m LCDA + m L $^{180, \, \mathrm{Also}, \, \angle BCD}$ is an ext. \angle of 6 of meas, 2x and y, so $m \angle BCD$ $^{m\angle BAD} = 2y + x. S_0, m\angle BC$ $^{3c+3y} = 180$. Therefore, in A Page 89 'EXPLORATIONS 1.4. Stetches and angle measures 2. Palse true for acute A 3. Th

Page 18 CT AND HOOM EXERCISE

1 out of tolors of the state of

Statements

- $\overrightarrow{AB} \parallel \overrightarrow{CD}$
- 2. $m \angle BAC + m \angle ACD = 180$
- $3. \ \frac{1}{2}m \angle BAC + \frac{1}{2}m \angle ACD = 90$
- 4. \overrightarrow{AE} bisects $\angle BAC$; \overrightarrow{CF} bisects $\angle ACD$.
- 5. $m\angle 2 = \frac{1}{2}m\angle BAC;$ $m\angle 3 = \frac{1}{2}m\angle ACD$
- 6. $m \angle 2 + m \angle 3 = 90$
- 7. $m \angle AXF = m \angle 2 + m \angle 3$
- 8. $m \angle AXF = 90$
- 9. $\overrightarrow{AE} \perp \overrightarrow{CF}$

- Reasons
- 1. Given
- 2. If 2 | lines are cut by a trans., then s-s. int. \(\Lambda \) are supp.; def. of supp. \(\Lambda \)
- 3. Div. Prop. of =
- 4. Given
- 5. \angle Bis. Thm.
- 6. Substitution Prop.
- 7. The meas. of an ext. \angle of a \triangle = the sum of the meas. of the 2 remote int. \angle s
- 8. Substitution Prop.
- 9. Def. of \perp lines
- 34. Since 3x and 3y are meas. of s-s. int. \angle s,

$$3x + 3y = 180$$
, and $x + y = 60$. Then $m \angle EDF =$

 $m\angle CDA = 180 - (x + y) = 120. \angle EBF$ is

the third \angle of a \triangle with \triangle of meas. 2x and 2y, so

$$m \angle CBA = 180 - (2x + 2y) = 180 - 120 = 60.$$

Then, in ABCD, $m \angle CDA + m \angle CBA = 120 + 60 =$

180. Also, $\angle BCD$ is an ext. \angle of $\triangle ECF$ with remote int.

 \angle s of meas. 2x and y, so $m \angle BCD = 2x + y$. Similarly, $m \angle BAD = 2y + x$. So, $m \angle BCD + m \angle BAD = 2x + x$.

3x + 3y = 180. Therefore, in *ABCD* opp. \angle s are supp.

Page 99 • EXPLORATIONS

- 1-4. Sketches and angle measures will vary. 1. False; true for acute A
- 2. False; true for acute & 3. True 4. False; true for rt. &

Page 103 • CLASSROOM EXERCISES

- 1. convex polygon 2. nonconvex polygon 3. not a polygon 4. nonconvex polygon
- 5. not a polygon 6. nonconvex polygon 7. It has the same shape.
- 8. (102 2)180 = 18,000;360

9.

					ney	to Ch	apter 3	pages log
No. of sides	6	10	20	36	18	360	4	oca 101
Meas. of each ext. ∠	60	36	18	10	20	1	90	
Meas. of each int. ∠	120	144	162	170	160	179	90	

Pages 104-105 • WRITTEN EXERCISES

- 1. (4-2)180 = 360; 360 2. (5-2)180 = 540; 360 3. (6-2)180 = 720; 360**4.** (8-2)180 = 1080; 360 **5.** (10-2)180 = 1440; 360 **6.** (n-2)180; 360

7. 360; yes

8.	No. of sides	9	15	30	60	45	24	180
	Meas. of each ext. \angle	40	24	12	6	8	15	2
	Meas. of each int. ∠	140	156	168	174	172	165	178

- 9. Let x = meas. of each of the $2 \cong 4$. 2x + 3(90) = (5 2)180, 2x + 270 = 540, 2x = 270, x = 135
- **10.** Let x = meas. of the fifth \angle . x + 40 + 80 + 115 + 165 = (5 2)180, x + 400 = 540, x = 140
- 11. 120 12-15. Sketches may vary. 12.

13.

- 14. not possible
- 15. not possible (An ext. \angle would have meas. 50, and 360 is not a multiple of 50.)
- **B** 16. Let n = number of sides; (n 2)180 = 5(360), n = 12.
 - 17. Let n = number of sides; $\frac{(n-2)180}{n} = 11\left(\frac{360}{n}\right)$, n = 24.
 - 18. a. 108 **b.** No (360 is not a multiple of 108.) 19.
 - 20. The sum of the meas. of the int. \angle s of 2 hexagons and 1 pentagon at any common vertex is 120 + 120 + 108 = 348. A sum of 360 is necessary to tile a plane.
 - 21. x + 2x + 3x + 4x = (4 2)180, 10x = 360, x = 36; $m \angle A = 36$, $m \angle B = 72$, $m \angle C = 108$, $m \angle D = 144; m \angle A + m \angle D = 180 \text{ (also)}, m \angle B + m \angle C = 180), \text{ so } \widehat{AB} \parallel \widehat{CD}$

22 a Let Mich x x Ca b. 1012 P. 102 R. = 100. 100 P. 100 P 23. LKBC and LKCB are ext. . A of a 36. m/K = 180 - (m/KBC + 4. LWBC and LWCB are each ext. mLW = 180 - (mLWBC + 1991) $25.2100 < (n-2)180 < 2200; 13\frac{2}{3} < 25.2100 < (n-2)180 < 2200; 13\frac{2}{3} < 25.2100 < (n-2)180 < 2200; 13\frac{2}{3} < 25.2100 < (n-2)180 < 2200; 13\frac{2}{3} < 2200; 13\frac{2}{3}$

c 26. a. [(n+1)-2]180 = [(n-2)]b. (2n-2)180 = [2(n-1)180]2(S+180)

27. a. Sketches may vary. **b.** Yes; 90 + 90 + 50 + 260 +

28. a. $\frac{(n-2)180}{n} = x \cdot \frac{360}{x}$; $x = \frac{n}{n}$ b. Even values ≥ 4

Page 107 • CLASSROOM EXERCISES 1. inductive 2. inductive 3. dec 5. deductive 6. inductive Pages 107-109 · WRITTEN EXERCISE A 1. 256, 1024 2. 6, 3 3, 1 1 243

10. Chan te polygon Ghas 7 sides. 15. 1534 × 0 + 2 111111 13. not Prove: <A // <C 16' 8'

8

05

22. a. Let
$$m \angle R = x$$
, then $m \angle S = m \angle T = 3x$; $60 + 130 + x + 3x + 3x = (5 - 2)180$, $7x + 190 = 540$, $7x = 350$, $x = 50$; $m \angle R = 50$, $m \angle S = m \angle T = 150$ **b.** $m \angle Q + m \angle R = 180$, so $\overline{PQ} \parallel \overline{RS}$.

23.
$$\angle KBC$$
 and $\angle KCB$ are ext. \angle s of a reg. decagon, so $m\angle KBC = m\angle KCB = \frac{360}{10} = 36$. $m\angle K = 180 - (m\angle KBC + m\angle KCB)$, so $m\angle K = 180 - (36 + 36) = 108$.

24.
$$\angle WBC$$
 and $\angle WCB$ are each ext. $\angle S$ of the n -gon, so $m\angle WBC = m\angle WCB = \frac{360}{n}$.
$$m\angle W = 180 - (m\angle WBC + m\angle WCB) = 180 - 2\left(\frac{360}{n}\right) = \frac{180n - 720}{n}$$

25.
$$2100 < (n-2)180 < 2200; 13\frac{2}{3} < n < 14\frac{2}{9}; n = 14$$

C 26. a.
$$[(n+1)-2]180 = [(n-2)+1]180 = (n-2)180+180 = S+180$$

b. $(2n-2)180 = [2(n-1)180] = 2[(n-2)+1]180 = 2[(n-2)180+180] = 2(S+180)$

27. a. Sketches may vary.

b. Yes;
$$90 + 90 + 50 + 260 + 50 = 540$$

28. a.
$$\frac{(n-2)180}{n} = x \cdot \frac{360}{n}$$
; $x = \frac{n-2}{2}$

b. Even values ≥ 4

Page 107 • CLASSROOM EXERCISES

- 1. inductive 2. inductive 3. deductive 4. inductive
- **5.** deductive **6.** inductive

Pages 107-109 • WRITTEN EXERCISES

- **A** 1. 256, 1024 2. 6, 3 3. $\frac{1}{81}$, $\frac{1}{243}$ 4. 25, 36 5. 17, 23 6. 40, 52 7. 15, 4
 - 8. $-\frac{1}{4}, \frac{1}{8}$ 9. 500, 250 10. Chan is older than Sarah. 11. none
 - 12. Polygon G has 7 sides. 13. none 14. No; deductively
 - 15. $1234 \times 9 + 5 = 11111$ 16. $9876 \times 9 + 4 = 88888$ 17. $9999^2 = 99980001$
- **B** 18. True

Given: $\overline{BA} \cong \overline{BC}$

Prove: $\angle A \cong \angle C$

19. True

Given: $\angle A \cong \angle C$

Prove: $\overline{BA} \cong \overline{BC}$

20. False

21. True

Given: ABCDE is a reg. pentagon.

Prove: $\overline{AC} \cong \overline{AD} \cong \overline{BE} \cong \overline{BD} \cong \overline{CE}$

22. True

Given: $\overline{AB} \parallel \overline{DC}; \overline{AD} \parallel \overline{BC}$ Prove: $\overline{AE} \cong \overline{EC}; \overline{DE} \cong \overline{EB}$

23. False

25. True

Given: ABCD is equilateral.

Prove: $\overline{AC} \perp \overline{BD}$

- **26. a.** 16 **b.** Guess: 32, Actual Count: 31
- 27. a. If both pairs of opp. sides of a quad. are $\|$, then opp. \angle are \cong . **b.** If both pairs of opp. \angle s of a quad. are \cong , then opp. sides are \parallel .

Given: ABCD is a quad.; $m \angle A = m \angle C$; $m \angle B = m \angle D$

Prove: $\overrightarrow{AD} \parallel \overrightarrow{BC}; \overrightarrow{AB} \parallel \overrightarrow{CD}$

20. False

21. True

Given: ABCDE is a reg. pentagon.

Prove: $\overline{AC} \cong \overline{AD} \cong \overline{BE} \cong \overline{BD} \cong \overline{CE}$

22. True

Given: $\overline{AB} \parallel \overline{DC}; \overline{AD} \parallel \overline{BC}$

Prove: $\overline{AE} \cong \overline{EC}$; $\overline{DE} \cong \overline{EB}$

23. False

25. True

Given: ABCD is equilateral.

Prove: $\overline{AC} \perp \overline{BD}$

b. Guess: 32, Actual Count: 31 **26. a.** 16

27. a. If both pairs of opp. sides of a quad. are \parallel , then opp. \angle s are \cong .

b. If both pairs of opp. \angle s of a quad. are \cong , then opp. sides are \parallel .

Given: ABCD is a quad.; $m \angle A = m \angle C$; $m \angle B = m \angle D$

Prove: $\overline{AD} \parallel \overline{BC}; \overline{AB} \parallel \overline{CD}$

Statements

- 1. $m \angle A + m \angle B + m \angle C + m \angle D = 360$
- 2. $m \angle A = m \angle C; m \angle B = m \angle D$
- 3. $2m\angle A + 2m\angle B = 360$; $2m\angle C + 2m\angle B = 360$
- 4. $m \angle A + m \angle B = 180$; $m \angle C + m \angle B = 180$
- 5. $\angle A$ and $\angle B$ are supp.; $\angle B$ and $\angle C$ are supp.
- 6. $\overline{AD} \parallel \overline{BC}; \overline{AB} \parallel \overline{CD}$

Reasons

- 1. The sum of the meas. of the int. ∠s of a quad. is 360.
- 2. Given
- 3. Substitution Prop.
- 4. Div. Prop. of =
- 5. Def. of supp. 🖄
- 6. If 2 lines are cut by a trans. and s-s. int. ≤ are supp., then the lines are || .
- **c.** Both pairs of opp. \triangle of a quad. are \cong if and only if opp. sides are $\|$.
- C 28. a. 13, 17, 23, 31, 41, 53, 67, 83, 101
 b. Guess: a prime number
 c. 121, 143, neither of which is prime

29.	No. of sides	3	4	5	6	7	8	n
	No. of diagonals	0	2	5	9	14	20	$\frac{n(n-3)}{2}$

30. a. There are 5 small \triangleq each with one of the points A, B, C, D, E as one vertex. The other two \triangleq of each of the \triangleq are ext. \triangleq of a pentagon. There are two complete sets of ext. \triangleq of the pentagon, with each set having total meas. 360. Then $m \angle A + m \angle B + m \angle C + m \angle D + m \angle E + 360 + 360 = 5(180) = 900$ and $m \angle A + m \angle B + m \angle C + m \angle D + m \angle E = 180$. b. Using the same reasoning as in part (a), $m \angle A + m \angle B + m \angle C + m \angle D + m \angle E + m \angle F + 360 + 360 = 6(180) = 1080$ and $m \angle A + m \angle B + m \angle C + m \angle D + m \angle E + m \angle F = 360$. c. For each additional point of a star, the sum of the meas. of the \triangleq increases by 180. The sum of the \angle meas. for an n-pointed star is 180(n-4). d. If a star has n points, $m \angle A + m \angle B + m \angle C + \cdots + m \angle N + 360 + 360 = n(180)$ and $m \angle A + m \angle B + m \angle C + \cdots + m \angle N = n(180) - 720 = 180(n-4)$.

Page 109 • CALCULATOR KEY-IN

- 1. 1; 121; 12321; 1111 \times 1111 = 1234321
- **2.** 42; 4422; 444222; $6666 \times 6667 = 44442222$
- 3. 64; 9604; 996004; $9998 \times 9998 = 99960004$
- **4.** 63; 7623; 776223; 7777 \times 9999 = 77762223

Page 110 • SELF-TEST 2

1. acute 2. scalene 3. 60 4. 105, 35 5.
$$(2x + 4) + (3x - 9) = 90$$
; $x = 19$

6.
$$y = 50$$
; $110 = z + 50$, $z = 60$

7.
$$2x + 5 = 3x + 10$$
, $x = -5$ (reject); $2x + 5 = x + 12$, $x = 7$; $3x + 10 = x + 12$, $x = 1$

8. 8 9. equilateral, equiangular 10. 360;
$$\frac{(10-2)180}{10} = 144$$

11.
$$180 - 174 = 6$$
; $\frac{360}{6} = 60$ 12. 32 13. 32 14. 36 15. 16

Pages 111-112 • CHAPTER REVIEW

- 1. 2 2. corr. 3. alt. int. 4. No; they can be skew. 5. 105, 105
- **6.** 70 = 6x 2; x = 12 **7.** (8y 40) + (2y + 20) = 180; y = 20
- 8. $b \perp c$; if a trans. is \perp to one of $2 \parallel$ lines, then it is \perp to the other one also.
- 9. \overrightarrow{DE} ; $\angle A$ is supp. to $\angle ADE$, and if 2 lines are cut by a trans. and s-s. int. $\angle s$ are supp., then the lines are \parallel .
- 10. $\overrightarrow{BE} \parallel \overrightarrow{CF}$; both are \perp to \overrightarrow{DF} .
- 11. corr. $\not \le \cong$; alt. int. $\not \le \cong$; s-s. int. $\not \le \text{supp.}$; in a plane, both lines are \bot to a third line; both lines are $\|$ to a third line.
- **12.** x + (2x 15) = 90; x = 35 **13.** 180 **14.** 100
- 15. $\angle 3 \cong \angle 6$ (If $2 \not \le$ are supps. of $\cong \not \le$, then the $2 \not \le$ are \cong .), $\angle 2 \cong \angle 8$ (If $2 \not \le$ of one \triangle are \cong to $2 \not \le$ of another \triangle , then the third $\not \le$ are \cong .)

b.
$$(6-2)180=720$$

c. 360

17.
$$\frac{(18-2)180}{18} = 160$$
 18. $\frac{360}{24} = 15$ 19. $\frac{(n-2)180}{n} = 150; n = 12$

20. 75, 90 **21.**
$$\frac{1}{100}$$
, $-\frac{1}{1000}$

Pages 112-113 • CHAPTER TEST

- 1. sometimes 2. sometimes 3. never 4. never 5. never 6. always
- 7. (3x 20) + x = 180; x = 50 8. 2x + 12 = 4(x 7); x = 20
- 9. $m \angle 1 = m \angle 2 = 60, m \angle 3 = 120$
- 10. $m \angle 1 = 58$, $m \angle 2 = 90$, $m \angle 3 = 32$, $m \angle 4 = 180 (32 + 35) = 113$, $m \angle 5 = 35$, $m \angle 6 = 55$

11.
$$m \angle 4 = \frac{(5-2)180}{5} = 108, \ m \angle 5 = 108 - 72 = 36, \ m \angle 1 = 180 - 108 = 72,$$

 $m \angle 2 = 180 - 108 = 72, \ m \angle 3 = 180 - (72 + 72) = 36$

12. $\angle EBC \cong \angle 2$ (If 2 lines are cut by a trans. and alt. int. $\angle s$ are \cong , then the lines are \parallel .), or $\angle 5 \cong \angle 3$ (If 2 lines are cut by a trans. and corr. $\angle s$ are \cong , then the lines are \parallel .)

13. Statements

- 1. \overrightarrow{BF} bisects $\angle ABE$; \overrightarrow{DG} bisects $\angle CDB$.
- 2. $m \angle GDB = \frac{1}{2}m \angle CDB;$ $m \angle FBE = \frac{1}{2}m \angle ABE$
- 3. $\overrightarrow{AB} \parallel \overrightarrow{CD}$
- 4. $m \angle CDB = m \angle ABE$
- 5. $\frac{1}{2}m\angle CDB = \frac{1}{2}m\angle ABE$
- 6. $m \angle GDB = m \angle FBE$
- 7. $\widehat{BF} \parallel \widehat{DG}$

Reasons

- 1. Given
- 2. \angle Bis. Thm.
- 3. Given
- 4. If $2 \parallel$ lines are cut by a trans., then corr. \angle s are \cong .
- 5. Div. Prop. of =
- 6. Substitution Prop.
- 7. If 2 lines are cut by a trans. and corr. \angle s are \cong , then the lines are \parallel .

14. 15, 17

Page 113 • ALGEBRA REVIEW

- **1.** 3 **2.** 2 **3.** (0, 0) **4.** Z **5.** (3, 5) **6.** (4, 3) **7.** (4, 0) **8.** (0, 4)
- 9. (-5,0) 10. (-4,3) 11. (-2,2) 12. (-4,-2) 13. (-2,-3)
- 14. (3, -2) 15. K, O, S 16. O, R, Z 17. 3 18. c, e 19. M, N, P
- 20. T, U 21. V, W 22. J, Q

23-34.

35. (2, 1) 36. (2, 5) 37. (0, 3) 38. (-3, 0) 39. (-4, -2) 40. (1, -1)

Pages 114-115 • CUMULATIVE REVIEW: CHAPTERS 1-3

A 1. sometimes 2. always 3. sometimes 4. always 5. always

6-8. Sketches may vary.

9. not possible 10. $\frac{-3.5 + 8.5}{2} = \frac{5}{2}$ or 2.5

11. 5x + 13 = 9x - 39, x = 13; $m \angle PQR = 2m \angle PQX = 2[5(13) + 13] = 156$

12. 180 - x = 2(90 - x) + 35, x = 35; \angle measure: 35, supp. measure: 145; comp. measure: 55

13. $x + 5x + 6x = 180, x = 15; \angle$ measures: 15, 75, 90 14. 2(60) = 120 15. 90

16. 90 - 60 = 30 **17.** 90 **18.** 60 **19.** 180 - 2(60) = 60

20. 180 - 60 = 120 **21.** 180 - 120 = 60 **22.** 180 - 2(60) = 60

23. False. If 2 lines are || , then they do not intersect; true.

24. True. If 2 lines are \perp , then they intersect to form rt. \angle s; true.

25. True. If an \angle is not obtuse, then it is acute; false.

26. True. If a \triangle is isos., then it is equilateral; false.

27. Vert. \angle s are \cong . 28. Seg. Add. Post. 29. \angle Add. Post.

30. If 2 lines are cut by a trans. and alt. int. \angle s are \cong , then the lines are \parallel .

31. The meas. of an ext. \angle of a \triangle = the sum of the meas. of the 2 remote int. \angle s.

32. Def. of \perp lines 33. The sum of the meas. of the \angle s of a \triangle is 180.

34. Def. of \perp lines 35. X 36. supp. 37. $\frac{(n-2)180}{n} = 108, n = 5$; pentagon

38. 2(12) = 24 39. \approx 40. inductive 41. biconditional 42. 360

43. (8-2)180 = 1080 44. acute

B 45. Statements

1. $\overline{WX} \perp \overline{XY}$

2. $\angle 1$ is comp. to $\angle 2$.

3. $\angle 1$ is comp. to $\angle 3$.

4. $\angle 2 \cong \angle 3$

- 1. Given
- 2. If the ext. sides of 2 adj. acute & are \bot , then the & are comp.
- 3. Given
- 4. If $2 \le$ are comps. of the same \angle , then the $2 \le$ are \cong .

46. Statements

1	RU	CIT
1.	RU	ST

2.
$$\angle 1 \cong \angle 2$$

3.
$$\angle R \cong \angle T$$

4.
$$\angle 3 \cong \angle 4$$

5.
$$\overline{RS} \parallel \overline{UT}$$

- 1. Given
- 2. If $2 \parallel$ lines are cut by a trans., then alt. int. \angle are \cong .
- 3. Given
- 4. If $2 \leq 0$ of one \triangle are \cong to $2 \leq 0$ of another \triangle , then the third ≤ 0 are \cong .
- 5. If 2 lines are cut by a trans. and alt. int. \triangle are \cong , then the lines are \parallel .